
CUSEC Coding Competition

Problem Description
Defragmentation is the process of reducing the amount of file system fragmentation, which occurs when
files are broken into many non-contiguous pieces. During defragmentation, files and free space are
reordered into contiguous areas. This improves the disk performance, since files can be read
sequentially.

For example, if the white blocks represent free space, then data on a fragmented disk might look like:

And after defragmentation, the data might look like:

Goal
The goal of this problem is to design a defragmentation algorithm for a fictional file system.

Input
The initial state of the fragmented disk is represented through a text file containing numbers.
Each line in the file represents a block on the disk:

 The address of the block is represented implicitly by the line number, starting with the first line
in the file, representing address 0

 Numbers in the file are whitespace separated (space, tab) and may contain leading and trailing
white spaces. Numbers may also be padded with leading zeros. Your program should handle the
tuple “0 1” just as well as “ 00 01 “

 The first number of each line is the file ID
 The second number of each line is the sequence number of that block within the file, starting at

0
 For example, “1234 2” represents the second block of file 1234

There are two special file IDs:

 Free space, represented by file ID 0, is space that blocks can be moved onto.

 Unmovable blocks, represented by file ID -1, are blocks that must remain at their original
location because they are in use by the operating system.

Sequence numbers for free space and unmovable blocks can be ignored.

All other file IDs are valid, and can be moved according to the constraints described in the Constraints
section.

For example, the text file on the left would correspond to the fragmented disk on the right:

Output
Your program should output a text file containing a list of moves. A move can span consecutive blocks
(like memcpy). Each move must contain the source begin address, source end address and destination
address. Once again, these numbers are whitespace separate, following the same rules as the disk file
format.

 The source begin address in inclusive and marks the start of the source range.
 The source end address is exclusive and marks the end of the source range
 The destination is the new location of the series of blocks

Example of Moves
Move the block at address 3 to address 4:
3 4 4

Move the blocks between addresses 0 and 9 to address 10:
0 10 10

Move them back:
10 10 0

Data can only be moved onto free space. For example, to swap the contents of blocks A and B, one must
first move the contents of one of the blocks to an address containing free space.

Constraints
The following constraints must be observed. Failing validation will lead to disqualification.

 The output of your program must match the given output format.
 Moves must be valid

- The destination of a move must always be free space, and must always have enough
space to fit all blocks

- Unmovable blocks cannot be moved
- Moves must be within the valid range of the disk

 There is no temporary space available aside from the free space on the disk
 Your program must run in a reasonable amount of time (i.e. approximately less than 5 minutes

on a modern computer [ex. dual-core 2.0Ghz with 2Gb RAM])

124 0
124 1
123 0
 0 0
 -1 0
123 2
123 1

Devin
Typewriter

Devin
Rectangle

Devin
Rectangle

Devin
Typewriter
0 9 10

Devin
Typewriter
10 19 0

Scoring
The programs will be scored based on a weighted function containing

 The average size of contiguous free space ranges - 25%
- A contiguous free space range is a sequence of blocks containing only free space
- A good program would have a high average size of contiguous free space ranges
- The average is biased to give a higher score to disks containing large ranges of free

space. For example, consider two disks containing two ranges of free space each: 6-1
and 4-3. These disks have the same average free space range size. The first disk will get a
higher score because it has a larger range of 6 free blocks.

 The average number of seeks required to read files - 75%
- A seek represents moving the head of the hard disk to read a different part of a file
- In our simplified disk, this is represented as a discontinuity in the file when reading it

sequentially.
- In the input file example, file #123 needs to make 3 seeks: 1 seeks to move the head to

the sequence 1, another seek to move the head to sequence 2, and a final more seek to
reach sequence 3 (since it is behind and our disk only reads forward). File #124 only
requires 1 seek though, because sequence 1 and sequence 2 are adjacent and the disk
can read them together

- A perfectly contiguous file will have only a single seek (to reach sequence 1), so the
lowest average number of seeks is best

This scoring function is normalized so that a score of 0.0 is the worst possible state of the disk, where all
files and free space fragmented completely. A score of 10,000.0 is a perfectly defragmented disk, with
all files being readable with a single seek and free space in one contiguous block.

Note: Some disks with immovable blocks will be impossible to perfectly defrag.

In the case of a tie, we will also consider the number of moves the program used to defragment the disk.
The winner would be the program that has the least number of moves.

We encourage you to run the scoring function on your output disks to see how your algorithm stacks up
with our test disks. Visit http://2012.cusec.net/competition to download a zip file containing:

 A set of test disks
 A command-line random disk generator written in Python
 A command-line move execution and scoring program written in Python
 Unit tests for the scoring program

The Python programs were written against Python 2.7.1

Scoring Program
Usage: python defrag_scorer.py [-h] --disk DISK --moves MOVES [--output OUTPUT]

 --disk specifies a path to a disk file
 --moves specifies a path to a moves file (the output of your program)
 --output is optional and will print out the final defragmented disk in the same file format as the

input. If this parameter is not set, the final disk state will be printed to the console

http://2012.cusec.net/competition

The program will print an exception if an invalid move is encountered. It will display which line of the
move file the error was found and the state of the disk at the time of the error. If you can run the scorer
without an exception, your move file is valid and meets all our constraints.

Generation Program
Usage: python disk_generator.py [-h] --size SIZE [--pctfree PCTFREE]

 [--pctimmovable PCTIMMOVABLE]
 [--minfilesize MINFILESIZE]
 [--maxfilesize MAXFILESIZE] [--output OUTPUT]

 --size specifies the size of the disk (in blocks) to generate
 --pctfree is the optional percentage of free blocks (from 0 to 100). Defaults to 50
 --pctimmovable is the optional percentage of immovable blocks (from 0 to 100). Defaults to 10
 --minfilesize is the optional minimum length of a file on disk. Defaults to 1
 --maxfilesize is the optional maximum length of a file on disk. Defaults to SIZE
 --output is the output filename. If no filename is specified, the disk will be printed in the

console.

Disk Visualizer
We have written a web application to help visualize the contents of the disk files as well as interface
with the scoring program. You can find this application at http://cusec2012.appspot.com/

Bugs
If you find bugs with any of these programs, please contact us. We have provided unit tests for the
scorer as an additional guarantee, but it’s still possible some bugs will have made it through. Please
provide a reproducible test case or patch when you contact us and we will try to correct it before the
submission deadline is up.

Hints
Developing a trivial solution is not too difficult; therefore we suggest that you use an iterative
development approach: get a basic solution working, and then tweak your algorithms to maximize your
score. Here are some things to think about:

 Strategy for dealing with unmovable blocks
 Strategy for ordering/placing files
 Strategy for moving blocks

Submission
To submit your program, send an email to cusec.competition@gmail.com with your source code and
detailed instructions needed to compile and run it. If the judges cannot run your code, it will be
disqualified. Please also include a brief description of your algorithm along with the name, school and
email of all of your team members.

When the email has been received, you will receive an automatic confirmation response.

Prizes
Winning teams will have the choice between gift certificates from either Future Shop or Newegg.ca

1st place $300
2nd place $200
3rd place $100

http://cusec2012.appspot.com/
mailto:cusec.competition@gmail.com

